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Abstract 

In this paper, we report on our investigation of the long memory of the Daily Minimum Electric 

Load (DMEL) at West Tripoli Electricity Station as recorded by the Electricity Company in 

Libya. We fitted an Autoregressive, Fractionally-Integrated, Moving-Average (ARFIMA) 

Model to the measured loads using 361 daily records covering the period of almost one year, 

extending from 5 January 2008 to 31 December 2008. The results show that the time series is 

of the long memory type and that it can become stationary with fractional differencing. After 

performing fractional differencing and determining the number of lags of the autoregressive 

and moving average (ARMA) components, the long memory ARFIMA (3, 0.499, 3) model was 

used to fit the data. Even though this model fit the data well, its forecasts were infected by the 

swing in the data. We estimated the parameters of the model and used those estimates to forecast 

20 out-of-sample data points. In light of the forecasting results of the model, we concluded that 

the ARFIMA is a great model in this regard. 

Keywords: Time Series, ARFIMA, Short-Range Dependence (SRD), Long-Range 

Dependence (LRD). 

 

1. Introduction 

In time series modeling, the analysis usually comes to the classic Box and Jekin’s method for 

time series models, that was developed in the 1970s, which can only capture short-range 

dependence (SRD). The SRD can be characterized by an exponential decay of the 

autocorrelation function, p(k), or described as the case when the sum of the values which p(k) 

assumes over all lags is finite (Brockwell and  Davis, 1991). On the other hand, long-range 

dependence (LRD) can be considered as the case when the current observations correlate 

significantly with the observations that are farther away in time (Baillie, 1996). 

Classic models describing SRD, such as the Autoregressive, Integrated, Moving Average 

(ARIMA) model, can not accurately describe the LRD. As a result, vrious models have been 

suggested to overcome this limitation of these models. One example is the model proposed by 

Erfani and Samimi (2009). Another example is the well-known autoregressive, fractionally-

integrated, moving average (ARFIMA) model. In this respect, this paper investigated 
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appropriateness of the ARFIMA model as a solution to the persistent non-stationarity of time 

series in the long-term data.  

The ARFIMA model was introduced by Granger and Joyeux (1980) and Hosking (1981). This 

model has proved to be more successful than the autoregressive, integrated, moving average 

(ARIMA) model. Within this context, there is bulky literature so far that deliberates on the 

contradictions between the ARFIMA and ARIMA models in time series forecasting. For 

instance, Baillie and Chung (2002) found that the ARFIMA model is superior to the 

Autoregressive Moving Average (ARMA) model and remarkably more successful than it in 

predicting time series data. 

In view of the foregoing discussions, this study examined viability of both the ARIMA and 

AFRIMA models for forecasting the Daily Minimum Electric Load (DMEL) at West Tripoli 

Electricity Station in Libya and compared the levels of performance of these two models to 

determine the one of which that can more accurately predict the DMEL at this station. 

The rest of the article is organized as follows. Section Two provides a brief review and 

description of LRD and SRD. Section Three introduces the AFRIMA model. Then, Section 

Four discusses model performance evaluation and the performance diagnostics. Section Five 

describes the study data and illustrates the data modeling process. Thereafter, the forecasting 

results are presented and discussed in Section Six. Then, Section Seven concludes this paper 

with conclusions drawn from this study. 

2. Long-Range versus Short-Range Dependence  

Long-range dependence (LRD) can be described as the case when the current observations 

correlate significantly with the observations that are farther away in time. One formal definition 

of the LRD stationary process states that the sum of the values of p(k) of the stationary process 

is infinite (i.e., ∑  ∞
𝑘=0 | ρ(𝑘)| = ∞ ) over all lags. This implies that p(k) slowly decays to zero at 

a very low speed of convergence. The SRD, on  the other hand, can be characterized by an 

exponential decay of p(k) or described as the case when the sum of the values of p(k) of the 

stationary process is finite (i.e. ∑  ∞
𝑘=0 | ρ(𝑘)| < ∞ ) over all lags. 
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3. The Autoregressive, Fractionally-Integrated, Moving Average (ARFIMA) Model 

A stochastic process, xτ, is called an ARIMA process of order (p, d, q), 
𝒑

(𝑩) 
𝒅𝒙𝒕 = 𝜽𝒒(𝑩) 𝒂𝒕 

, d = 0, 1, 2, …., where  = (𝟏 − 𝑩) is the difference operator, and 
𝒑

(𝑩) , and 𝜽𝒒(𝑩) are the 

pth and qth degree polynomials, respectively, where 𝐝 ∈ (-0.5, 0.5). 

The ARFIMA(p, d, q) processes are widely used in modeling the LRD time series, where p is 

the autoregressive order, q is the moving average order, and d is the level of differencing (Liu, 

Chen  and  Zhang, 2017). The larger the value of d, the more closely it approximates a simple 

integrated series, and the more likely it is to better approximate a general integrated series than 

a mixed-fractional difference and an ARMA model. Therefore, Whittle’s (1953) method has 

good performance in estimation of the fractional differencing parameter, d, according to 

Velasco and Robinson (2000) and Shimotsu and Phillips (2006). 

4. Model Performance Evaluation and Perormance Diagnostics 

Before interpretation and use of an ARFIMA model, we have to check whether the model is 

specified correctly or not. In the present study, the following tests were applied to the model 

residuals: 

(i)- Test of the Mean of the Residuals  

This test is a modified, two-sided test. Its null and alternative hypotheses are:  

                                             

 

  0

0 t

A t

H = E a = 0 

H : E a 
 

(ii)- Autocorrelation and Partial Autocorrelation of the Residuals 

In testing autocorrelation and partial autocorrelation of the residuals, the null and alternative 

hypotheses are the following:  

0

0 k

A k

H : p = 0, k=1

H : p 
 

(iii)- Test for Normality of the Residuals  

The most common approach to determining whether or not distribution of a variable does, or 

does not, follow the normal distribution is to draw and check the normal quantile-quantile plot 

(the Q-Q plot) or the scatter plot of the standardized empirical quantiles of xt against the 

quantiles of a standard normal random variable. Another option is to run the diagnostic tests of 
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serial correlation (the Box-Pierce test), residual autocorrelation (the Ljung-Box test), normality 

(the Kolmogorov-Smirnov test), and stationarity (Kwiatkowski et al.’s (1992) test (KPSS test)). 

5. Data Analysis 

Data for this study were DMEL time series data for West Tripoli Electricity Station in Libya 

that were compiled by the Electricity Company. The dataset comprised 361 measurements of 

DMEL for a period of nearly one year, extending from 5 January 2008 to 31 December 2008. 

A plot of these load data as a function of time is provided by Figure 1. 

 

Figure 1: Daily minimum electric load (DMEL during the study period (5 January 2008 - 31 

December 2008) 

5.1 The DMEL0M Dataset and its Graphical Properties 

Figures 2 and 3 present the results obtained from the autocorrelation function (ACF) and the 

partial autocorrelation function (PACF) in the preliminary analysis of the DMEL data with zero 

mean, that is, DMEL0M. The ACF in in Figure 2 indicates that the DMELs at West Tripoli 

Electricity Station decay at a hyperbolic rate, i.e., slower than the short memory time series 

data. Accordingly, the researchers conclude that the time series demonstrates evidence of long 

memory. 

 

 

Figure 2: The autocorrelation function 

(ACF) of the DMEL data series with zero 

mean (DMEL0M)  

Figure 3: The partial autocorrelation 

function (PACF) of the DMEL data series 

with zero mean (DMEL0M) 

5.2  The Unit Root Tests of the DMEL0M Series 

http://www.ajsp.net/
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We tested the unit root of the DMEL0M data based on Phillips and Perron’s (1988) test (PP), 

the Augmented Dickey and Fuller’s (1981) test (ADF), and Kwiatkowski et al.’s (1992) test 

(KPSS). The results of these three tests are listed in Table 1. Since the stationarity assumption 

was not met we considered applying necessary procedures such as differencing and fractional 

integration to the data. 

Table 1: Results of the PP, ADF, and KPSS tests of the DMEL0M time series 

Test Value of Statistic Truncation lag parameter p Decision 

PP (1) -29.4927 5 0.01 Stationary 

ADF (2) -2.2397 7 0.4757 Non-stationary 

KPSS (3) 0.7541 4 0.01 Non-stationary 

(1) PP: Phillips and Perron’s (1988) test.  

(2) ADF: The Augmented Dickey and Fuller’s (1981) test.  

(3) KPSS: Kwiatkowski et al.’s (1992) test. 

5.3 Establishment of the ARFIMA model 

The ACF of the DMEL0M series introduced by Figure 2 indicates that this time series 

demonstrates evidence of long memory. Therefore, we used the fractionally-integrated parts 

according to Velasco and Robinson (2000) as shown in in Figure 4, with a d value of 0.4999 

(Whittle estimator). 

 

Figure 4: Time plot of the fractional-differencing time series 

The results of the ACF and PACF of the fractionally-differenced time series are depicted in 

figures 5 and 6. Similar unit root tests were performed on these series. The results produced by 

the three aforementioned tests (Table 2) pointed out that this series is stationary.  
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Figure 5: The ACF of the fractionally-

differenced time series 

Figure 6: The PACF of the fractionally-

differenced time series 

  

Table 2: Results of the PP, ADF, and KPSS tests for the fractionally-differenced time 

series 

Test Value of Statistic Truncation lag parameter p Decision 

PP (1) -353.2034 5 0.01 Stationary 

ADF (2) - 4.5057 7 0.01 Stationary 

KPSS (3) 0.2284 4 0.1 Stationary 

(1) PP: Phillips and Perron’s (1988) test.  

(2) ADF: The Augmented Dickey and Fuller’s (1981) test.  

(3) KPSS: Kwiatkowski et al.’s (1992) test. 

5.3.1 Identification of the Optimum ARFIMA Model 

The optimization routine of the log-likelihood function shows that the optimal ARFIMA model 

for the fractionally-differenced time series is ARFIMA (3, 0.4999, 3) since it has the lowest 

value of the Akaike Information Criterion (AIC) (Akaike (1973)). Accordingly, the results  

(Table 3) show that the ARFIMA (3, 0.4999, 3) model is the best model.  

Table 3: The AIC and σ2 values for the different ARFIMA models 

Model AIC (1) Estimated σ2 

ARFIMA(1, 0.4999, 1) 4021.72 3964 

ARFIMA(1, 0.4999, 3) 4022.03 3923 

ARFIMA(2, 0.4999, 2) 4022.03 3924 

ARFIMA(3, 0.4999, 3) 4019.72 3850 

AIC: The Akaike Information Criterion. 

 

Before we could draw any conclusion, it was necessary for us to examine the residuals of all 

models to see if they did, or did not, pass the four aforementioned diagnostic tests. The 
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outcomes of the diagnostic tests (Table 4) disclose that all the studied ARFIMA models passed 

the diagnostic tests of serial correlation, residual autocorrelation, normality, and stationarity. 

We, therefore, proceeded to estimate the parameters of the selected model, namely, the 

ARFIMA (3, 0.4999, 3) model. 

 

Table 4: Results of the diagnostic tests for the different ARFIMA models 

Test 

 

Model 

Box-Pierce Ljung-Box Kolmogorov-Smirnov KPSS (1) 

P 

ARFIMA(1, 0.4999, 1) 0.7524 0.4839 0.9890 0.1 

ARFIMA(1, 0.4999, 3) 0.7691 0.7579 0.9779 0.1 

ARFIMA(2, 0.4999, 2) 0.4335 0.7668 0.9945 0.1 

ARFIMA(3, 0.4999, 3) 0.9967 0.9079 0.9779 0.1 

(1) KPSS: Kwiatkowski et al.’s (1992) test. 

5.3.2 Estimating the Parameters of the ARFIMA (3, 0.499, 3) Model 

The estimated values of the parameters of the ARFIMA (3,0.4999,3) model  are displayed in 

Table 5. Having fitted a model to the fractionally-differenced DMEL0M time series, we 

checked the model for adequacy. The results (Table 5) indicate that all the model parameters 

are significant.  

Table 5: The estimated values of the ARFIMA (3, 0.4999, 3) model parameters 

Parameter Coefficient S.E (1) Student’s t p 

  
1 

 - 0.6572 0.1007 -20.46 0.000 

 
2 

 0.6377 0.0430 15.49 0.000 

 
3 

 0.9024 0.0968 31.39 0.000 

𝜃1  0.7745 0.0876 -29.28 0.000 

𝜃2 - 0.5457 0.0726 9.37 0.000 

𝜃3  - 0.8421 0.0950 129.83 0.000 

(1) S.E: Standard error of the estimate (ε). 

5.3.3 Checking the ARFIMA (3, 0.499, 3) Model 

Figures 7, 8, and 9 depict the residual time, the ACF, and the PACF of the fitted ARFIMA (3, 

0.4999, 3) model, respectively, of the fractionally-differenced DMEL0M time series. A study 
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of the ACF and the PACF with 95% confidence intervals for the residuals points out that almost 

all correlations fall inside the corresponding 95% confidence  intervals. The plots show that 

there is no serial correlations among the residuals of the series, hence suggesting stationarity 

and independence of the data. Consequently, the ARFIMA (3, 0.4999, 3) model is adequate and 

good.  

 

Figure 7: Time plot of the residuals for the ARFIMA (3, 0.4999, 3) model 

 

 

Figures 8: The ACF of the residuals of 

the ARFIMA (3, 0.4999, 3) model 

Figures 9: The PACF of the residuals of the 

ARFIMA (3, 0.4999, 3) model 

 

Based on the results of the diagnostic tests shown in Table 6, all the tests agree on that the 

residuals are normally distributed. There also exist alternative ways for graphically 

investigating the normality of distribution of variables. For example, the QQ-plot (e.g., Figure 

10) is a plot of the quantiles of the variable under consideration against the quantiles of a normal 

distribution. Another graphical way serving the same purpose is the histogram plot of the 

residual values against the normal distribution (e.g., Figure 11). The histogram of a normally-

distributed variable should be symmetric. 
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Table 6: Diagnostic tests of residuals for the ARFIMA (3, 0.4999, 3) model 

Test Aspect tested Test statistic p Decision 

Box-Pierce Serial Correlation 0.0000 0.9967 Reject 

Ljung-Box Resid Correlation 4.7385 0.9079 Reject 

Kolmogorov-Smirnov Normality 0.5125 0.9779 Accept 

KPSS (1) Stationarity  0.0647 0.1 Accept 

 t Zero mean - 0.1656 0.8686 Accept 

(1) KPSS: Kwiatkowski et al.’s (1992) test. 

Three different plots (Figure 12) were drawn to analyze the behavior of the residuals of the 

fitted ARFIMA (3, 0.4999, 3) model and check if the residuals are white noise or not. The 

results of the tests support that the model is adequate at the level of significance (α) of 0.05 as 

all the associated p values are lower than 0.05. The model was then used to forecast future 

values of the DMEL series.  

 

 

Figure 10: A Q-Q plot of the residuals of the 

ARFIMA (3, 0.4999, 3) model 

Figure 11: Histogram of the residuals of 

the ARFIMA (3, 0.4999, 3) model 
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Figure 12: Graphical analysis of the behavior of the residuals of the fitting ARFIMA 

model  

The dotted  lines in the second plot correspond to the {±2/√𝑵} significance level for the 

autocorrelations while the dotted  lines in the third plot denote the probability (p) of 

obtaining the indicated result by chance. 

6. Forecasting Results  

After obtaining appropriate (that is, fitting) models and determining their parameters, ability of 

the most fitting model (i.e., the ARFIMA (3, 0.4999, 3) model) to forecast the DMEL time 

series was tested. We made 20-steps ahead forecast with the ARFIMA (3, 0.499, 3) model. 

Figure 13 unfolds fluctuations in the future forecasts of the DMEL time series obtained from 

this model.  

 

Figure 13: Point forecasts of the ARFIMA (3, 0.4999, 3) model and the associated 80% 

and 95% prediction intervals 

 

The far right, blue-colored part of Figure 13 points out a series of future predictions represented 

by a straight line extending to the end. This line indicates that the DMEL values become 

constant and do not change afterwards. 

Figure 14 is a plot of the measured DMEL values and this forecasted by the ARFIMA (3, 

0.4999, 3) model. It can be seen that the most fitting predictions are those generated by the 

ARFIMA model. It is noticed in Figure 14 that the DMEL forecasts of the ARFIMA (3, 0.4999, 

3) model are very close to the measured DMEL values (DMEL0M). 
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Figure 14: The measured DMEL values (DMEL0M) and the corresponding values 

forecasted by the ARFIMA (3, 0.4999, 3) model and the ARIMA (0, 1, 2) model 

7. Conclusion   

In this paper, we have shown how to fit ARFIMA models to real DMEL time series. Our 

experiment confirmed that the ARFIMA model is a good traffic model that is capable of 

capturing the properties of real traffic. This can be attributed to the fact that the ARFIMA 

processes are highly flexible and capable of simultaneously modeling both the long-range and 

the short-range dependent behavior of a time series.  

The stochastic structure of the DMEL data with zero mean (DMEL0M) at West Tripoli 

Electricity Station in Libya has been analyzed by using a long memory ARFIMA model. The 

ARFIMA (3, 0.4999, 3) model was used to fit the same DMEL0M data. Even though this model 

fit the data well, we calculated the fractionally-differenced time series by using the value of 

0.4999 for the fractional differencing parameter, d, as suggested by Whittle (1953). In order to 

develop an ARFIMA model on underlying series and determine the model parameters, we 

followed the rule of Box and Jenkins and applied the ACF and PACF of differenced time series 

on the DMEL0M data. Then, we estimated the parameters of the AR and MR operators of this 

model. We then used these estimates to make 20-steps ahead forecasts with the ARFIMA (3, 

0.4999, 3) model. The forecasting results highlighted that the DMEL values predicted by the 

ARFIMA (3, 0.4999, 3) model were very close to the measured DMEL values. 
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