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Abstract

In this paper we introduce the variational bicomplex for a fibered manifold, sections of a bundle, and we develop the
requisite calculus of vector fields and differential forms on the infinite jet bundle of such spaces. We pay particular
attention to the notion of generalized vector fields.
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1. Introduction

The variational bicomplex is a double complex of differential forms defined on the infinite jet bundle of any fibered

manifold 77 . E — M . This double complex of forms is called the variational bicomplex because one of its differentials
(or, more precisely, one of the induced differentials in the first term of the first spectral sequence) coincides with the
classical Euler-Lagrange operator, or variational derivative, for arbitrary order, multiple integral problems in the calculus
of variations.Thus, the most immediate application of the variational bicomplex is that of providing a simple, natural, and
yet general, differential geometric development of the variational calculus. Indeed, the subject originated within the last
fifteen years in the independent efforts of W. M. Tulczyjew and A. M. Vinogradov [1] to resolve the Euler-Lagrange
operator and thereby characterize the kernel and the image of the the variational derivative. But the utility of this
bicomplex extents well beyond the domain of the calculus of variations. Indeed, it may well be that the more important
aspects of our subject are those aspects which pertain either to the general theory of conservation laws for differential
equations, as introduced by Vinogradov, or to the theory of characteristic (and secondary characteristic) classes and
Gelfand-Fuks cohomology [1], as suggested by T. Tsujishita. All of these topics are part of what I. M. Gelfand [1], in his
1970 address to the International Congress in nice, called formal differential geometry. The variational bicomplex plays the
same ubiquitous role in formal differential geometry, that is, in the geometry of the infinite jet bundle for the triple (

E, M, 7 ) that the de Rham complex [1] plays in the geometry of a single manifold M .
2. Sections of fiber bundles
(2.1)Definition

Consider a generic fiber bundle 77 : E — M with generic fiber F . We name section of the bundle arule s that to each
point P € M of the based manifold associates a point S(p) € Fp in the fiber above P , namely a map

s:M—E,
such that:
vpeM :s(p)ext(p).

The above definition is illustrated in Fig. 1 which also clarifies the intuitive idea standing behind the chosen name for such
a concept.
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Figure 1: A section of a fiber bundle [3] Fre, P.G.

It is clear that sections of the bundle can be chosen to be continuous, differentiable, smooth or, in the case of complex
manifolds, even holomorphic, depending on the properties of the map S in each local trivialization of the bundle. Indeed

given a local trivialization and given open charts for both the base manifold M and for the fiber F the local description of
the section reduces to a map:

UcR"—>F, <R"
where m and n are the dimensions of the base manifold and of the fiber respectively.

Example (2.2) holomorphic vector fields on S?

As we have seen above the 2-sphere S %isa complex manifold of complex dimension one covered by an atlas composed
by two charts, that of the North Pole and that of the South Pole (see Fig. 2)
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Figure 2: A section of a fiber bundle [3] Fre, P.G.

We are specifically interested in smooth sections, namely in section that are infinitely differentiable. Given a bundle
7. E — M | the set of all such sections is denoted by:

I'(E,M).

Of particular relevance are the smooth sections of vector bundles. In this case to each point of the base manifold P we
associate a vector U(P) in the vector space above the point P . In particular we can consider sections of the tangent bundle
TM associated with a smooth manifold M . Such sections correspond to the notion of vector fields.

Definition (2.3)

Given a smooth manifold M |, we name vector field on M a smooth section te F(TM , |V|) of the tangent bundle. The

local expression of such vector field in any open chart (U ) (0) is

—

f=t”(x)% vxeU c M.
X
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3. Infinite Order Jet Bundles

Let 77: E — M be a smooth fibered manifold with total space E of dimension n+m and base space M of dimension
N . The projection map 7 is a smooth surjective submersion. The fiber ﬂ_l(X) over a point X € M may change

topologically as X varies over M : for example, let E be R? — {(1,0)} and let 7 be the projection onto the X axis. In

many situations E will actually be a fiber bundle over M but this additional structure is not needed to define the
variational bicomplex. We assume that M is connected.

We refer to the fibered manifold E locally by coordinate charts ((p,U ) where, for peU c E |

o(p) = (x(p),u(p))

and
x(p) = (xi(p)): (xl,xz,..., x”), u(p) :(u“(p)):(ul,uz,...,um).

These coordinates are always taken to be adapted to the fib- ration 7 in the sense that ((00 U, ) where @, = @o 7 and
U, =z(U), is achart on the base manifold M and that the diagram

Uu —25 R"xR"
T3 d proj ,
u, —2> R"

where pl’Oj((X, U))= (X) , commutes. If (l//,V) is an overlapping coordinate system and ¥ (p) = (y( p),u( p))then
on the overlap U MV we have the change of coordinates formula

y! :yj(xi)anduﬂ:uﬁ(xi,u“). (3.1)

If p:F — N is another fibered manifold, then amap @ : E — F is said to be fiber-preserving if it is covers a map
?, M — N, i.e, the diagram
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commutes. Thus, the fiber over X € M in E is mapped by ¢ into the fiber over Y = ¢, (X) € N in F. We shall, on

occasion, consider arbitrary maps between fibered bundles although the general theory of the variational bicomplex is to be
developed within the category (which is defined following) of fibered manifolds and fiber-preserving maps.

(3.2) Definition

Let M beacompact, n dimensional C* manifold, possibly with boundary. Denote by FB(M) the category of C”
fiber bundles over M . A morphism f 1 E — F of FB(M) isa C*mapsuch that f, = f|E, maps E, into F, for
each X € M, where E, isafiber of E atx.If E and F are C™ vector bundles and each f, islinearwecall f a

vector bundle morphism. We denote by VB(M) the category of C” vector bundles over M and vector bundle

morphisms and by FVB(M) the mongrel category of C* vector bundles over M and fiber bundle morphisms.
(3.3) Definition

Suppose that there is a given strictly positive measure £ on M and we let E denote aC  fiber bundle over M . The space
of K -jets of local sections of E , regarded as a C” fiber bundle over E will be denoted by J & (E). It can also be

regarded as a C ” fiber bundle in which case we denote it by J* (E). Asusual j, : C*(E) = C*(J*(E)) denotes
theK -jets extension map.

If F isa C” real valued function on J ¥ (E) then for each s € C” (E) we get a real valued function L(S) on M by
L(s)(x) = F(jk (S)X). Such a function L:C”(E) - C”(R,,) (where Ry, =M xR is the product line bundle

over M ) is called a K th order Lagrangian for E . The set of all K th order Lagrangians for E is a vector space Lgn K (E).

Denote by 77 : J*(E) — M the fiber bundle of K -jets of local sections of E .

The fiber (7)™ (X) of X € Min J*(E)consists of equivalence classes, denoted by j*(S)(X), of local sections s of
E atx ; two local sections S;and S, about X are equivalent if with respect to some adapted coordinate chart (and hence

any adapted chart) all the partial derivatives of S, and S, agree up to order K atx.

Each projection 7z, : J' (E) — J*(E), defined for | > K by

1 -k
i (9)00)]= 1 (909,
is a smooth surjection and, in fact, for | =K +1defines J' (E) as an affine bundle over J * (E).This implies that for all

I >k, J'(E)issmoothly contractible to J * (E) .

We shall often write, simply for the sake of notational clarity,

k _ _k k _ _k
e =Tnyandr,, =7 .
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for the projections from J* (E) to Eand M .

An adapted coordinate chart ((p,U ) on E lifts to a coordinate chart (@,J) onJ¥(E). Here U= (IZE )71 (U) and, if
s:U, = U is the section S(X) = (Xi .57 (X! )) then the coordinates of the point j* (s)(x) are

3.4) i ()00 ]= (' ,uue,ug us L),

iy

where, for | =01,..., K,

|
« _ 0s”

U" H -_—— . X y
Ml oxoxL.ox o

andwhere 1<1, <1, <...<1i, <n.

The inverse sequence of topological spaces {J “(E), ﬂ'll( } determine an inverse limit space J " (E) together with
projection maps

7y J*(E) > J“(E)and 77 : J”(E) > E,
and
7y I (E) > M.

The topological space J“(E) is called the infinite jet bundle of the fibered manifold E . A pointin J* (E) can be
identified with an equivalence class of local sections around a point X € M — local sections s around X define the same
point J*(S)(X) in J”(E) if they have the same Taylor coefficients to all orders at X . A basis for the inverse limit

~ 1
topology on J ” (E) consists of all setsW = (7[,;”) (W), where W is any open setin J*(E)andk =01,2,....
If o isapointinJ ™ (E) it will be convenient to write
k 0
o' =m (o)
for its projection into J ¥ (E).
The notion of a smooth function on the infinite jet bundle must be defined.
(3.5) Definition

Let p be any manifold and letC* (J*(E),P) be the set of smooth maps from J * (E)to P. The set of smooth functions
from J” (E) to P is denoted byC” (J” (E),P) . 1f f e C*(J”(E),P)then, f must factor through a smooth map
f from J*(E)toP for somek , ie

(3.6) f=foxy
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We call K the order of f . If f isoforderK , then it also of any order greater than K . In particular, the projections maps

7, are themselves smooth functions of orderK .

We let C”(J“ (E)) denote the set of smooth, real-valued functions on J” (E) . If f is a smooth, real-valued function on
J”(E) which isrepresented by a smooth function fonJk (E) ,then on each coordinate neighborhood (7[,? )71 V)
and for each point o = J”(S)(X) (7[; )_1 (U) with K -jet coordinates given by (3.4),

(3.7)f(a):f(x u”,u’,u’ LUl ik).

Ut A iy

Amap f:P— J”(E) issaid to be smooth if for any manifold Q and any smooth mapg :J“(E) — Q, the
composition g o f fromPto Q isasmooth map. Likewise, if ©: F — N is another fibered manifold we declare that

amap ®:J”(E) > J”(F) issmooth if for every smooth map g :J”(F) — Q the composition g o ® from
J”(E) to Q is smooth.

Amap ®@:J”(E) — J”(F) called projectable if it is covers maps from J * (E)to J*(F) for eachkK , i.e

I7(E) —25 J°(F)
e d A
BE) o IF)

Such a map is of type (0,1,2,...) .

Although the fibered manifold 7z : E — M may not admit any global sections, the bundle /AN (E) > E always
admits global sections. These can be readily constructed using partitions of unity.

An important class of smooth maps from J“(E) to J”(F) are those which arise as the prolongation of maps from E
toF .

(3.8) Definition
Let ¢ be amapfrom E to F which covers a local diffeomorphism @, - Then the infinite prolongation of ¢ isthe map
prg:J”(E) > J"(F)
defined by
(3.9) Pro(i*()09) =[i* (g5 5" s 00).

where s isa local section of E defined on a neighborhood of x on which ¢ is a diffeomorphism.
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The prolongation of @ is a smooth, projectable map. Moreover, if ¢ is a diffeomorphism, then so is pr ¢ .
4. Vector Fields and Generalized Vector Fields

The tangent bundle to the infinite jet bundle J* (E) can be defined in various (equivalent) ways. One possibility is to
consider the inverse system of tangent bundles T (J % (E)) with the projections (77, )" from T(J'(E))to T(J*(E))
for all | > K as connecting maps and to designate T (J “ (E)) as the inverse limit of these vector bundles. In this way

T (J* (E)) inherits the structure of a topological vector bundle over J* (E) .Alternatively, the tangent space
T,(J”(E)) atapoint o € J*(E) may be defined directly as the vector space of real-valued R linear derivations on

J”(E) .The tangent bundle T (J (E)) can then be constructed from the union of all individual

tangent spaces T, (J ™ (E)) in the usual fashion. These two approaches are equivalent. Indeed, a derivation X _ on
J”(E) at the point & determines a sequence of derivations X, . to T(J “(E)) at o =27 (o) —if f isa

smooth function on J ¥ (E), then
kaak (F)=X_(fox.)(41)
These derivations satisfy

(71':()* X|'a| = Xk’o_k (42)

for all | > K and therefore define a tangent vector in the inverse limit space T (J“(E)) at o . Conversely, every
sequence of vectors X, , €T _,(J”(E)) satisfying (4.2) defines a derivation X , on J*(E) at o —if fisa

function on J” (E) which is represented by a function fond (E), then

X, (f)=X,_.(f).

A

The projection property (4.2) ensures that this is a well-defined derivation, independent of the choice of representative f
of f .

If X p Is represented by the sequence of vectors X, at o for k = 0,1,2,... and D is represented, by functions (I)Eqk

then @ (X ) is represented by the sequence of vectors (P Y (X )

A vector field X on J”(E) is defined to bea C*(J” (E) valued, R -linear derivation on C*(J”(E) .Thus, for any
real-valued function f on J*(E), X (f) isasmooth function on J*(E) and must therefore be of some finite order.
Although the order of the function X () may exceed that of T , the order of X () is nevertheless bounded for all
functions f of a given order.
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Proposition (4.3)

Let X be a vector field on J” (E) Then for eachk =0,1,2,... , there exists an integer m, such that for all functions f
of orderK , the order of X (f) does not exceed m, .

Proof:

The case k=0and E compact is easilytreated For k=0and E non compact or for k > 0, we argue by contradiction.
First, pick a sequence of points p, , 1 =1,2,3,...in J k (E) with no accumulation points. Let U be a collection of
disjoint open sets in J * (E) containing p; . Let ¢, be smooth functions on J *(E) which are 1 on a neighborhood of p,

and have support inside of U, .

Now suppose, contrary to the conclusion of the proposition, that there are functions f, on J k (E)fori=1,2,3,...such

that the order of X (f;) exceeds 1. We can assume that the order of X (f,) exceedsi in aneighborhood of a point ﬁi ,
= o -1 .. - - - - .
where P; € (ﬂ'k ) (p;) . If this is not the case, if the maximum order of X ( f,) is realized about a point

~ ] -1 . . e
Q; € (ﬂ'k ) (pi) , then we can simply redefine fi to be the composition
of f, with any diffeomorphism of J*(E)which carries p, to the point g; = 7z, (C;) .

Define f = zi @, . . Then fis a smooth function on J*(E)but X (f) isnota smooth function on J* (E) since it is

not of global finite order. This contradiction proves the lemma.

We say that a vector field X on J”(E) is of type (mo,ml,mz,...) if for all functions f of order K the order of

X(f) is m, . With no loss in generality, we shall suppose the sequence M, increases with K . A vector field on

J* (E) is projectable if it projects under 77, to a vector field on J*(E)for each K . Projectable vector fields are of type
(01,2,.) .

With respect to our induced local coordinates on J (U, a vector field X takes the form

X=a' i+b“

bej .pL . (4.4)
ox' p=1| 1<i <i,<..<i 1<n ou’ ip

iz

The components a',b® and by, i areall smooth functions on J*(U).If f isasmooth function on J*(U) then f

ip..dp
is of finite order and so X (f) involves only finitely many terms from (4.4). The vector field X is projectable if the a'

and b” are smooth functions on U and the b;; ; are smooth functions on J “U), k=12,...
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The sets of sections of T(J*(E)) for k =0,1,2,... do not constitute an inverse system (since it is not possible to project

an arbitrary vector field on J ! (E) tooneon J : (E)for k <1 )and, for this reason, it is not possible to represent a

given vector field on the infinite jet bundle by a sequence of vector fields on finite dimensional jet bundles. To circumvent
this problem we introduce the notion of generalized vector fields. Generalized vector fields first appeared as generalized or
higher order symmetries of the KdV equation. They play a central role in both the theory and applications of the variational

bicomplex. First recall that if P and Q are finite dimensional manifolds and ¢ : P — Q is a smooth map, then a vector
field along ¢ isasmooth map Z : P — T (Q) such that for all p € P, Z(p) is a tangent vector to Q at the point

#(p).

Definition (4.5)

A generalized vector field Z on J* (E)is a vector field along the projection 7z,° , i.e., Z is a smooth map
Z:J”(E) > TUI*(E)

such that forall o € J*(E) , Z(0) € T, (J*(E)).

Similarly, a generalized vector field Z on M is a vector field along the projection 7, , i.e., Z isasmooth map

Z:J"(E)>T(M)

such that forallo = j”(s)(X) , Z(o) €T, (M) .

Since a generalized vector field Z on J : (E) is a smooth map from the infinite jet bundle to a finite dimensional

manifold, it must factor through J™ (E) for somem > K . Thus there is a vector field z along 7[&“ , e, amap
Z:J"™(E) >TI*(E))
such that

Z=Zorx

We call m the order of the generalized vector field Z . If f isa function on J*(E), then Z () is the smooth function on
J” (E) defined by

Z(f)(o)=Z(c")(f).

The order of the function Z( f) ism . Note that a generalized vector field on J : (E) of order K is simply a vector field
on J*(E).

Generalized vector fields are projectable. If Z is a generalized vector field on J ' (E) then for K <l the map
Z :J”(E) = T(J*(E)) defined by
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Z(0) = (7. (" )(Z(@))]
is a generalized vector field on J * (E).We write (7Z'|I< )* (2) for Z .

Proposition (4.6)

Let X be a vector field on J* (E) of type (mo ,m;,m, ,) .Then there exist generalized vector fields X, on J “(E) of
order m, such that

(7[11 )*(X|) = X, (4.7)
and, for all functions f of orderk ,
X(F)(o) =X, (o)(f). (48

Conversely, given a sequence of generalized vector fields X, on J K (E) satisfying (4.7)), there exists a unique vector

field X onJ”(E) satisfying (4.8).
Proof:

Given X |, simply define the generalized vector fields X « by

X, (0) =z ) (0)(X,).

We remark that if the vector field X on J ™ (E) is given locally by (4.4), then the associated generalized vector fields
X, onJ k (E) are given by truncating the infinite sum on P in (4.4)at p =K .

5. Differential Forms
The p™ exterior product bundles A” (J* (E)) together with the pullback maps
(2t) - AP ¥ (B)) > A" (34(E))

defined for alll =K >0, form a direct system of vector bundles whose direct limit is designated as the pth exterior
product bundle A (37 (E)) of J”(E) .Let o € J”(E) .Then each w € A® (J”(E)) admits a representative
weN’, (J*(E)) forsome kK =0,1,2,...and o = (7}")" @ We callK the order of . If X*, X 2,..., X"

are tangent vectors to J“(E) at o then, by definition,

(X, X2, XY = al(m) X () X2 () X P).
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Observe that this is well-defined, that is independent of the choice of representative @ of @ . Evidently, if @ is of order K
and one of the vector fields X*, X ?,..., X Pis 7,° vertical, then (X", X ?,..., X?)=0.

A section of A”(J*(E))is a differential p -form on J* (E).We denote the vector space of all differential forms on
J*(E) by QP (J*(E)) .These spaces of differential p forms also constitute a direct limit system whose direct limit is

the vector space of all differential P forms on J” (E) and is denoted by Q" (J “(E)) .Again, every smooth differential
P form @ on J”(E) isrepresented bya P form & on J* (E)for some K . In local coordinates (X,U,U) ap-

form @ on J ™ (U) is therefore a finite sum of terms of the type
Alx,uldu;® Adu;? A....Adu;* Adx" Adx® A...AdX" (5.1)

where a + b = p and where the coefficient A is a smooth function on J (U .The order of the term (5.1) is the maximum
of the orders of the coefficient function

Alx, u] the differentials du;’ .

If @ isa P-formon J*(E)and X*, X ?,..., X ” are generalized vector fields on J* (E) of type m,,m,,..,m,

respectively, then the function @(X*, X ?,..., X ?) is a smooth function on J* (E) the order of which is equal to the

maximum of M, M, .., M. If @ is a differential form on J ™ (E) which is represented by a form @ on J “(E)and

X X2 ..., X" are vector fieldson J~ (E) represented by
sequences of generalized vector fields {X,l}, {X z },, {X,p } for 1 =0,1,2,... then

(X, X0y XP) = XE, X2, XP)

With these definitions in hand, much of the standard calculus of differential forms on finite dimensional manifolds readily
extends to the infinite jet bundle.

Let  be a differential P form on J * (E) which is represented by the form & on J*(E).If X is a vector field of type
(my,m,,m,,...) on J* (E) which is represented by the sequence of generalized vector fields on J * (E), and if
®:J”(E) — J”(F) is a smooth map represented by the sequence of maps ®* : J™ (E) = J*(F) and @ isa
formon J* (F) represented by a form & on J*(F) then the pullback form @ * () is represented by the form

@) (&) of order m, Exterior differentiation
d:Q°(I”(E)) > Q37 (E))

is similarly defined via representatives if @ isa P formon J” (E) represented by @ on J k (E) then dw isthe

p+1formon J”(E) represented by de . In local coordinates, the differential df of a function of order K is given by

df =(;idx +(0,, f)du” + (8!, f)du® +...+ (8" f)du?

iy dy
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dx + Z(a' f)du (5.2)

1]=0
When the order of f is unspecified, we simply extend the summation in (5.2) from
[I|= K tol] = o and bear in mind that sum is indeed a finite one.

Let X and Y are vector fields on J” (E) and suppose that « is a one form. It follows from the above definitions and the

invariant definition of the exterior derivative d on finite dimensional manifolds, that
(df )(X) = X(f),
(d@)(X,Y)=X((V))-Y(a(X))-|(X,Y)],

and so on.

Lie differentiation of differential forms on the infinite jet bundle is exceptional in this regard. This is due to the fact that for

an arbitrary vector field X onJ”(E), there is no general existence theorem for the integral curves of X and hence even
the

Short time flow of X may not be defined. However, when X is a projectable vector field on J“ (E) , then the flow of
each projection X, is a well-defined local diffeomorphism @, (t) on J*(E)for eachK . If @ is represented by the form
@ onJ*(E), define

L@lo) [y, @) =| L) @)o)]

From this definition, it can be proved that for vector fields X, X, ,..., X o

p . ~
Ly (X3, Xy X3) = X(@(X 1, X g X, )+ D (D) o[X, X, ] X K X, ).
i=1
(5.3)

For a non-projectable vector field X the right-hand side of this equation is still a well-defined derivation on Q (J*(E))
and so, for such vector fields, we simply adopt (5.3) as the definition of Lie differentiation.

Now let Q" (J” (E)) be the full exterior algebra of differential forms on J* (E) .The contact ideal C(J” (E))is the

ideal in Q" (J(E)) of forms @ such that for all & € J*(E) and local sections s of E aroundc® = 77 (o),

[i”(®)] Ma(e)=0.
If @eC, then dw € C sothat Cis actually a differential ideal.

A local basis for C is provided by the contact one forms
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o7 =duf —uydx’,
where |I| =0, 1,2, . ... We call |I| the order of the contact form &, even though this form is defined on the (|I|+1)- St jet

bundle over U.

Definition (5.4)

If 7:U — U, is alocal coordinate neighborhood for Eand Z:U, — J*(U) satisfies
E'(w)=0

for all @ € C, then there exists a local section s:U, — U such that

=20 = " ()0

forall xeU,

Proposition (5.5)

Letz:E—>Mand p:F — N be two fibered manifolds and let ¢:E — F be a smooth map which covers a local
diffeomorphism ¢, :M — N .

(i) The prolongation of @, prg:J”(E) — J”(F) preserves the ideal of contact forms, i.e.,

[org] c0(F)) = (7 (®))
(i) Let @ : J”(E) — J ' (F) be a smooth map which covers¢ . If @ preserves the contact ideal, then ® = prg.
Proof:

To prove (i), let @ € C(J oo(F))and let, 7 = [pl‘¢]* (@) .We show that, 77 € C(J * (E)).Let o= j"(s)(X) bea
pointin J” (E) where s is a local section of E around x and let S = goSo ¢Jl be the induced local section of F

around the point Y = ¢, (X) .Let & = j*(5)(Y) .The definition (3.5) of pr¢ implies that

prge j*(s)=J"(s)= 4.

The chain rule now gives
[i*©)] Wn) =[i* )] W([prel (0)w(3))

= [prge i 9)] W[0(&)]

=[i"® ] ()]
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— 400§ ®] et&).

This last expression vanishes since @ lies in the contact ideal of J“ (F) . Therefore 77 belongs to the contact ideal of
J*(E).

To prove (ii), let 7:U — U and p:V —V, be coordinate neighborhoods on E and F such that ¢, :U, =V, isa
diffeomorphism. Let s :U, — U be any local section and let & :V, — J“ (V') be defined by

2(y) = (@0 j* () o " k).

Because D is assumed to preserve the contact ideal, =" (@) = 0 for any @ e C(J*(F)) .This implies that there is a
section S :V, —V such that Z(y) = j”(S)(y) forally eV, ie.,

=00 -1 00
Do j7(s)ody =]7(s).
Since @ covers¢ , it follows immediately that S = ¢o So @ " and hence ® = Pre, as required.

6. The Variational Bicomplex
The theory of variational bicomplexes can be regarded as the natural geometrical setting for the calculus of variations. The

geometric objects which appear in the calculus of variations find a place on the vertices of a variational bicomplex [6], and
are linked by the morphisms of the bicomplex. Such morphisms are closely related to the differential of forms.

This section is devoted to a detailed analysis of the variational bicomplex for the trivial bundle
E:R"xR™ - R",
Local Exactness and the Homotopy Operators for the Variational Bicomplex

Let E be the trivial bundle E : R" xR™ — R" . LetQ"* = Q"*(J* (E)). We shall proof the local exactness of the
variational bicomplex by establishing the following three propositions.

Proposition (6.1)

Foreachr =0,1,2,..., n, the vertical complex

0>Q, W) 500 & ,ort_& 50" 55y

is exact.
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Proposition (6.2)
For each S > 1, the augmented horizontal complex
0-5Q% 50t i 5 L 50" 50" L SF° 50 (65)
is exact.
Proposition (6.3)
The Euler-Lagrange complex £ (J ”(E))
0 >R— 0% 4,0 _ du 5 |
SV @ Jn - CEENY o UL NN SHINY S5 SR VNG S SUID TN S5 (6.6)

is exact.
Proof of Proposition (6.1)
The exactness (in fact, global exactness) of (6.4) at s = 0 has already been established in Proposition: (Let

we Q" (I”(E)). Then d, @ = O ifand only if @ is the pullback, by 7, ofa r formon M ).

For S=>1, the proof of exactness proceeds along the very same lines as the proof, of the local exactness of the de Rham
complex [1] as found in, for example. Let

R=u“ , (6.7)

ou”
be the vertical radial vector field on E. Then the prolongation of R is the radial vector field
prR=u“d, +u®o’ +u”‘8"
on J“(E) and the corresponding flow on J* (E) is the one parameter family of diffeomorphism
@, [xu]=[x.eu]=(x,e°u”,eu” eus....).
Let @ be atype (r, s) form on J*(E) .Then the Lie derivative formula gives

2 [o:0]- @[, R.0]

=d, |®" (prR-w) |+ @ [prR—d, o).
In this equation we replace ¢ by log t and integrate the result fromt=0to t =1 to arrive at
o=d, [N @)+ dyw),  ©8)

where the vertical homotopy operator
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h\;,s :Qr,s _)Qr,s—l

is defined by
hy* (@) = j @y (PrR-@)dt . (6.9)

Note that the integrand is a actually smooth function at t = 0. Indeed, let a)[X,tU]denote the form obtained by evaluating

the coefficients of @ at the point [x,tu]. For instance, if f is a real-valued function on J*(E) and
w=f[xuly,
where 7 is the wedge product of r of the horizontal forms dx' and s of the vertical forms 6 | then
afx,tu]= f[xtuly

even though the contact forms @, contain an explicit U;" dependence. With this convention, the integrand in (6.9)
becomes

(%q)fogt(erﬁa))j[x, u]=t"?(prR—o)[xtu] = t** prR—a[x,tu]. (6.10)

Because S >1, this is certainly a smooth function of t .
To prove Proposition 6.2, we need the following identity. Recall that the inner Euler operators Fa' were defined by that
0

Dj is the total vector field Dj =tot— .
ox’

Lemma (6.11)

Let @€ Q"° and set@; = D;—@. Then

Q |+1) i(d,w)=F 0:‘(dxj /\a))+|l||:mjl'(dxi /\a)). (6.12)
Proof of Proposition (6.2)

For S>1, the horizontal homotopy operator
hr,s . Qr,s N Qr—l,s
oo

is defined by
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r,s < | |+1 a I
h'*(@)==Y — -1~ D, [9 AF) (a)j)]. (6.13)
S‘ 1= 0n—r+| |+1
Let  bean K™ order form of type (r, s). To verify that
hi(dy o) +d, e (@)=, 614

for $>1 and 1<r <n, we multiple (6.12) by 0,

1
s(n—r+|l|

have that

apply the differential operator DI and sum on |I|, we

s0="D,[0° AF! ()],

=
so that the result of this calculation reduces to (6.14).

Equation (6.14) also holds for r = 0 (with the understanding that Q~°

r =n, h.® () coincides with the form 7 as given by 77 =
o=1(w)+d, () as

(@) +d,, |(h7* (@)=

= 0) since Dj—|a) =0foranyw € Q% with

h/;* (@) and consequently we can rewrite the equation

(6.15)

Together equations (6.14) and (6.15) prove the exactness of the horizontal augmented horizontal complex (6.5)

In the next lemma we use the Lie-Euler operators Eo',
Lemma (6.16)
Let e Q"°
Loy = I\;Jrl(dH a’)"' dy I ( r+1(60))
where Iy 1 Q"% — Q"% is defined by

k 1+1

V(@)= — "

HO r+||+1

For r =n,

L@ = prY=E(2)+d,, (1! ()).

D[V AE (@)

be a horizontal, type (r,0) form and let Y be an evolutionary vector field on E . Then, for r <n

(6.17)

(6.18)

(6.19)
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Proof of Proposition (6.3)

It is possible to prove Proposition (6.3) from Propositions (6.1) and (6.2) using elementary spectral sequence arguments

(see [1]).

7. Cohomology of the Variational Bicomplex

In this section we explore some of the global aspects of the variational bicomplex on the infinite jet bundle J*(E) of the

fibered manifold 7z : E — M by proving that the interior rows of the augmented variational bicomplex are globally
exact.

Definition (7.1)

The sequence of spaces and maps

0 —» R — Flu]— 5V [u]— 5V [u]—2 Fu]| <> Flu| "> D[u] .2

is a cochain complex - the composition of successive maps is zero. One of the maps in (7.2) is the Euler-Lagrange operator
E and for this reason we call this sequence the Euler-Lagrange complex.

Theorem (7.3)

Let 71 E — M be a fibered manifold. Then, for each S >1, the augmented horizontal complex
0> Q” (" (E)—L 50" (I (E)—L Q> (J*(E) —L—....

—% 50" J”(E)——>F*(J”(E) >0 (7.4)

is exact.

Proof:

The exactness of (7.4) at Q"°(J” (E))is established by using a standard partition of unity argument together with
induction on I (see [1]).

CONCLUSION

In mathematics, the Lagrangian theory of fiber bundles is globally formulated in a algebric terms of the variational
bicomplex, without appealing to the calculus of variations. For instance, this is the case of classical field theory of fiber
bundles

The variational bicomplex is a cochain comlex of the differential graded algebra of exterior forms on jet manifolds of
sections of a fiber bundle, Lagrangian and Euler Lagrange operators on a fiber bundle are defined as elements of this
bicomplex. Cohomology of the variational bicomplex leads to the global first variational formula and first Noether's
theorem.
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